Technical Publication

Seven Tips To Cut Wastewater Aeration Energy Costs With Thermal Mass Flow Meters

Randy Brown, Marketing Director Fluid Components International (FCI)

Visit FCI online at <u>www.FluidComponents.com</u> | FCI is ISO 9001 and AS 9100 Certifie

FCI World Headquarters 1755 La Costa Meadows Drive | San Marcos, California 92078 USA Phone: 760-744-6950 Toll Free (US): 800-854-1993

FCI Europe Persephonestraat 3-01 | 5047 TT Tilburg, The Netherlands | Phone: 31-13-5159989

FCI Measurement and Control Technology (Beijing) Co., LTD

Room 107, Xianfeng Building II, No.7 Kaituo Road, Shangdi IT Industry Base, Haidian District | Beijing 100085, P. R. China **Phone:** 86-10-82782381

Seven Tips To Cut Wastewater Aeration Energy Costs With Thermal Mass Flow Meters Randy Brown, Marketing Director, Fluid Components International LLC

Figure 1. FCI ST100 Thermal Flow Meter at WWT Plant

O ne of the biggest expenses in wastewater treatment operations is the cost of energy to run the blowers and compressors that produce air for the aeration basins. The fgures most often cited are that 40 to 50 percent of a wastewater plant's total energy usage can be attributed to the aeration process.

By measuring the system's air fows with accurate, repeatable air fow meters, the aeration process can be better controlled to optimize the process and minimize plant energy cost. Three fow sensor technologies typically have been used in aeration air fow monitoring applications in wastewater treatment plants:

- Differential pressure (orific plates)
- Vortex shedding technologies
- Thermal dispersion (mass flow

Within wastewater treatment plant aeration systems, it is now generally accepted that thermal dispersion mass fow meters are the preferred, proven best solution and have the largest installed base for this application (Figure 1). For plant expansions, new plants and upgrades this trend is expected to continue. Here are seven tips that explain how thermal mass flo meters can reduce aeration plant energy costs and have become the fow meter of choice for aeration applications.

Tip 1: Replace Legacy Technology Flow Meters

Orific plates and vortex shedding meters remain installed in many older aeration systems. Plant engineers can build a sound engineering case and strong ROI calculationsto gradually replace these legacy flo metering technologies during retrofi and plant upgrade projects. The justificatio for their replacement with thermal fow meters can easily be built around energy cost savings, improved aeration process performance and reduced maintenance costs of both the blowers themselves and the fow meters.

Tip 2: Get Better Measurement Accuracy

Thermal mass fow meters are generally accurate to $\pm 1\%$ of rdg, $\pm 0.5\%$ FS (or better depending on the specifi meter), and with repeatability to $\pm 0.5\%$ of rdg.. This level of accuracy and repeatability adequately meets the needs of wastewater treatment aeration processes.

Tip 3: Achieve Wider Flow Range Flexibility

With the capability to measure from extremely low flow to very high flo rates (<1 SFPS to 1000 SFPS), thermal mass flo meters more than adequately support the requirements of wastewater aeration treatment plants. Their standard wide turndowns (100:1) provide the range needed to always measure accurately in variable or changing operating conditions such as those due to community demand fuctuations, seasonal changes in weather or in start-up versus full capacity operations.

Tip 4: Direct Mass Flow Measurement Is Less Expensive

Thermal flo meters measure mass flo directly (Figure 2). Unlike DP or Vortex shedding technologies, they do not require the additional installation of temperature or pressure sensors,

Figure 2. Thermal Mass Flow Versus Other Flow Technologies

Seven Tips To Cut Wastewater Aeration Energy Costs With Thermal Mass Flow Meters Randy Brown, Marketing Director, Fluid Components International LLC

which will still only infer mass fow. Applying thermal fow meters will not only avoid the expense of the additional sensors themselves, but will also avoid costs for extra piping, –extra piping installation and maintenance.

Tip 5: Low Cost, Single Tap Meter Simplifes Installation

Insertion-type thermal fow meters are easily installed through a single tap point in the pipe as opposed to full bore (i.e., spoolpiece section) meter technologies. There is no need to interrupt the process, shut down the line or cut the pipe and re-weld. Most are installed with a simple ball valve to facilitate easy installation or removal. With its small diameter, center-point mounted insertion probe there is virtually no pressure drop with a thermal mass fow meter. That means the blowers in aeration systems outfitte with thermal flo meters can run at lower power levels resulting in reduced energy consumption and direct cost savings.

Tip 6: Easily Overcome Limited Straight Run

Wastewater treatment plant aeration systems often lack enough pipe straight-run to ensure proper fow meter performance. This best-practice engineering solution is to install a fow conditioner that will ensure a fully developed and repeatable flo profil with minimal pipe run. Insertion thermal mass fow meters can be supplied with, and specificall calibrated for use with, flo conditioners (Figure 3). Flow conditioners can reduce straight-run requirements from 20 to 30 diameters (d) down to as little as 7d. The highest quality fow conditioners eliminate both swirl and profil distortions and overcome flo profil changes that occur in transitional fow regions. However, some fow conditioner technologies add a lot of pressure drop that will increase blower usage to overcome and will negate some of the previously mentioned energy savings. Look closely at fow conditioner pressure drop ratings and choose one with minimal pressure drop to maximize energy cost savings and ROI.

Tip 7: Low Maintenance and Longest Service Life

With no moving parts, there is nothing to clog, foul, break, wear out, clean or repair with a thermal mass fow meter. Thermal fow meters can continue to operate un-touched and trouble-free for many years. With advances in techniques even calibration can be checked in-situ, without removing from the process, which can save cost and time by avoiding un-needed factory or

Figure 3. Vortab VIP Flow Conditioner Photo

calibration lab returns. In-situ calibration verification can be done either partially (electronics only) with dry-check techniques or completely (sensors included) with a wet-check technique where the installed thermal fow meter is retracted into a ball valve in-situ and a precise, controlled amount of an inert gas like nitrogen is administered to the meter via a portable calibration verificatio kit.

Money and Time Saving Conclusions

Thermal mass fow meters offer a number of advantages in wastewater aeration treatment plant applications. They are accurate over a wide fow range, provide direct mass fow measurement, are easiest and lowest cost to install, cause virtually no pressure drop, are the lowest cost for line sizes 4 to 16 inches [100 to 400mm] and require very little maintenance, which ensures continuous, trouble-free operation over a long life.

All of that means optimum air fow measurement and control that will reduce the work load and run-time of blowers and compressor to deliver air to aeration ponds resulting in significan energy cost savings and lower maintenance. In addition, the lower cost installation and virtually no maintenance costs of thermal mass fow meters results in a low instrument life-cycle cost. With thermal meters supporting your aeration system, you'll save money up front with easy insertion-style meter installation, your air delivery costs will go down every day and you'll cut maintenance cost and time for years to come.