Supplemental Manual
FLT93 Safety Instrumented System (SIS) Requirements

FLT™93 Series FlexSwitch™
Flow, Level, Temperature Switch / Monitor
Models: FLT93B, FLT93C, FLT93F,
FLT93L, FLT93S

Fluid Components International LLC (FCI). All rights reserved.
Notice of Proprietary Rights

This document contains confidential technical data, including trade secrets and proprietary information which is the property of Fluid Components International LLC (FCI). Disclosure of this data to you is expressly conditioned upon your assent that its use is limited to use within your company only (and does not include manufacture or processing uses). Any other use is strictly prohibited without the prior written consent of FCI.

© Copyright 2015 by Fluid Components International LLC. All rights reserved. FCI is a registered trademark of Fluid Components International LLC. Information subject to change without notice.
Table of Contents

Table of Contents ......................................................................................................................................................................................iii
List of Figures ...........................................................................................................................................................................................iii
List of Tables............................................................................................................................................................................................iii
FLT93 Safety Instrumented System (SIS) Requirements......................................................................................................................... 1
  Introduction ....................................................................................................................................................................................... 1
  Compliance Through FMEDA (Failure Modes, Effects And Diagnostic Analysis) ................................................................. 1
  FLT93 Safety Identification ............................................................................................................................................................... 1
  Installation in SIS Applications .......................................................................................................................................................... 1
    Configuring the Instrument for SIS Application ......................................................................................................................... 1
    Configuring Alarm Levels .......................................................................................................................................................... 3
  Proof Test .......................................................................................................................................................................................... 4
    Recommended Proof Test (Verifies Sensor and Electronics) ................................................................................................... 4
    Alternate Proof Test (Verifies Electronics, Isolates Sensor) ...................................................................................................... 4
  Calculation of Average Probability Of Failure On Demand (PFDavg) ................................................................................................. 4
  Product Repair .................................................................................................................................................................................. 4
  FLT93 SIS Reference ....................................................................................................................................................................... 5
  Failure Rate Data .............................................................................................................................................................................. 5
  Terminology ...................................................................................................................................................................................... 5

List of Figures

  Figure 1 – 5208 Control Module Jumper Locations .................................................................................................................. 2
  Figure 2 – 5208 Control Module Component Locations ........................................................................................................ 3
  Figure 3 – Wiring Alarm Outputs in Series for Use with 1 PLC/DCS Input .................................................................................... 4

List of Tables

  Table 1 – Failure Rates According to IEC 61508-1 ........................................................................................................................ 5
FLT93 Safety Instrumented System (SIS) Requirements

Introduction
This document describes how to configure the FLT93 (with 5208 control module) for SIL 2 compliance in a Safety Instrumented System (SIS) application. The safety-critical output of the FLT93 is provided through the SPDT relays.

Compliance Through FMEDA (Failure Modes, Effects And Diagnostic Analysis)
- SIL (Safety Integrity Level): 2
- HFT (Hardware Fault Tolerance): 0
- Subsystem Type: A

FLT93 Safety Identification
The FLT93 does not contain any firmware that requires verification. The information contained in this document relates to the circuit design utilizing surface mount components. The electronics shall be contained within manufacturer's standard enclosures.

Installation in SIS Applications
Installations are to be performed by qualified personnel. No special installation is required in addition to the standard installation practices outlined in the FLT93 IO&M (Document No. 06EN003401). Environmental and operational limits are listed in the manual's Technical Specification section.

Configuring the Instrument for SIS Application
For all safety-related applications, configure the FLT93 in a fail-safe alarm configuration as listed below. In each of the listed applications, Alarm No. 1 is assigned to the process variable being measured and Alarm No. 2 is the fail-safe circuit. Refer to Figure 1 and Figure 2 below for module jumper locations and component locations, respectively.

1. Low Flow Alarm Applications:
   - Jumpers J20 and J18 – Set Alarm No 1 and Alarm No. 2 both to Flow/Level configuration
   - Jumper J23 – Set Relay to Dual SPDT (One Relay per Alarm) configuration
   - Jumper J27 – Set Alarm No. 1 to Relay De-Energized with Low Flow configuration
   - Jumper J24 – Set Alarm No. 2. To Relay De-Energized with High Flow configuration
   - Alarm No. 1 setpoint is adjusted for desired low flow alarm condition.
   - Alarm No. 2 setpoint is adjusted below minimum signal output (0.5 volts)

2. High Flow Alarm Applications:
   - Jumpers J20 and J18 – Set Alarm No 1 and Alarm No. 2 both to Flow/Level configuration
   - Jumper J23 – Set Relay to Dual SPDT (One Relay per Alarm) configuration
   - Jumper J26 – Set Alarm No. 1 to Relay De-Energized with High Flow configuration
   - Jumper J25 – Set Alarm No. 2. To Relay De-Energized with Low Flow configuration
   - Alarm No. 1 setpoint is adjusted for desired high flow alarm condition.
   - Alarm No. 2 setpoint is adjusted above maximum signal output (7.0 volts)

3. Low Level Alarm Applications:
   - Jumpers J20 and J18 – Set Alarm No 1 and Alarm No. 2 both to Flow/Level configuration
   - Jumper J23 – Set Relay to Dual SPDT (One Relay per Alarm) configuration
   - Jumper J27 – Set Alarm No. 1 to Relay De-Energized with Low Level configuration
   - Jumper J24 – Set Alarm No. 2. To Relay De-Energized with High Level configuration
   - Alarm No. 1 setpoint is adjusted for the average value between the air/gas and liquid signals.
   - Alarm No. 2 setpoint is adjusted below minimum signal output (0.5 volts).
4. **High Level Alarm Applications:**
   - Jumpers J20 and J18 – Set Alarm No 1 and Alarm No. 2 both to **Flow/Level** configuration
   - Jumper J23 – Set Relay to **Dual SPDT (One Relay per Alarm)** configuration
   - Jumper J26 – Set Alarm No. 1 to **Relay De-Energized with High Level** configuration
   - Jumper J25 – Set Alarm No. 2. To **Relay De-Energized with Low Level** configuration
   - Alarm No. 1 setpoint is adjusted for the average value between the air/gas and liquid signals.
   - Alarm No. 2 setpoint is adjusted above the maximum signal output (7.0 volts).

Through the monitoring of both the Alarm No. 1 and Alarm No. 2 relays, the FLT93 is considered to be “intrinsically reliable” because in addition to monitoring the process condition it also monitors itself and alarms the operator in either case.

---

**HEATER WATTAGE CONTROL**

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>J12</td>
<td>1.75 W</td>
</tr>
<tr>
<td>J13</td>
<td>0.75 W</td>
</tr>
<tr>
<td>J14</td>
<td>0.21 W</td>
</tr>
<tr>
<td>J32</td>
<td>3.0 W</td>
</tr>
<tr>
<td>J33</td>
<td>HTR OFF</td>
</tr>
<tr>
<td>J34</td>
<td>HTR CUTOFF</td>
</tr>
</tbody>
</table>

**MODE SWITCH S1**

*Shown in RUN POSITION*

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>J10</td>
<td>TP1</td>
</tr>
<tr>
<td>J11</td>
<td>TP2</td>
</tr>
</tbody>
</table>

**ALARM DUTY NO. 1**

*ENERGIZED AT NO FLOW*

<table>
<thead>
<tr>
<th>J20</th>
<th>J18</th>
</tr>
</thead>
</table>

**ALARM DUTY NO. 2**

*ENERGIZED ABOVE TEMP*

<table>
<thead>
<tr>
<th>J24</th>
<th>J25</th>
</tr>
</thead>
</table>

**RELAY ENERGIZATION**

**ALARM NO. 2**

*ENERGIZED BELOW TEMP*

<table>
<thead>
<tr>
<th>J24</th>
<th>J25</th>
</tr>
</thead>
</table>

---

**Figure 1 – 5208 Control Module Jumper Locations**
Reference the FLT93 IO&M (Document No. 06EN003401) for proper configuration and verification of the FLT93 relay outputs. Bypass the output of the SPDT relays during testing to avoid a false trip. After use of the calibration potentiometer for adjusting Alarm No. 1 and Alarm No. 2, turn the calibration potentiometer (R24) to the appropriate minimum or maximum value (0.5 or 7.0 volts) to ensure random switching of the Mode switch leads to a fail-safe state. Ensure the Mode switch (S1) is set to “RUN” when placing the instrument in service.

### Configuring Alarm Levels

Ensure that the relay configuration for Alarm No. 1 is set for energized contacts during normal flow or level conditions. Thus, a detection of adverse flow or level condition, loss of power to the FLT93 or sensor failure will cause the relay to de-energize to a fail-safe alarm state. Ensure that the relay configuration for Alarm No. 2 is set for energized contacts during normal operation and that the alarm setpoint is outside of normal operating conditions to assure against false trips. With Alarm No. 2 set up in this manner, a loss of power to the FLT93 or a sensor failure will cause the Alarm No. 2 relay to de-energize to a fail-safe alarm state.

Common practice is to connect the Alarm No. 1 and Alarm No. 2 relays to independent inputs at the PLC/DCS. An alternative method that allows for the use of a single input at the PLC/DCS is to connect the Alarm No. 1 and Alarm No. 2 relays in series as shown in Figure 3 below.
Figure 3 – Wiring Alarm Outputs in Series for Use with 1 PLC/DCS Input

**Proof Test**

Use the recommended proof test or alternate proof test described below to identify dangerous, undetected failures in the FLT93 switch. It is recommended that the proof test be performed yearly at minimum.

**Recommended Proof Test (Verifies Sensor and Electronics)**

1. Bypass the safety function and take appropriate action to avoid a false trip.
2. Confirm that both Alarm No. 1 and Alarm No. 2 relays are energized.
3. Increase or decrease the process variable (flow or level) to the desired trip point. Observe that the Alarm No. 1 relay changes state (de-energized) and that Alarm No. 2 relay remains energized.
4. Return the process variable to normal operating conditions. Observe that both Alarm No. 1 and Alarm No. 2 relays are energized again.
5. Remove the bypass and otherwise restore normal operation.

**Alternate Proof Test (Verifies Electronics, Isolates Sensor)**

1. Bypass the safety function and take appropriate action to avoid a false trip.
2. Confirm that both Alarm No. 1 and Alarm No. 2 relays are energized.
3. Place Mode switch S1 to CAL. This isolates the sensor input and simulates a voltage input to the relay control circuits.
4. Adjust the calibration potentiometer (R24) until Alarm No. 1 changes state.
5. Readjust the calibration potentiometer to the maximum value to ensure fail-safe operation.
6. Place Mode switch S1 to RUN.
7. Confirm that both Alarm No. 1 and Alarm No. 2 relays are energized.
8. Remove the bypass and otherwise restore normal operation.

**Calculation of Average Probability Of Failure On Demand (PFD_{avg})**

PFD_{avg} calculation is found in the FMEDA report (contact FCI for a copy of the report).

**Product Repair**

The FLT93 is repairable by major component replacement. All product repair and part replacement is to be performed by qualified personnel only.
**FLT93 SIS Reference**

The FLT93 must be operated in accordance to the functional and performance specifications listed in the IO&M (Document No. 06EN003401) Technical Specification section.

**Failure Rate Data**

The FMEDA report includes failure rates and common cause Beta factor estimates (contact FCI for a copy of the report). The following is a summary of the failure rate data. The data shown reflects the relay outputs being used in conjunction with high-impedance PLC-inputs.

<table>
<thead>
<tr>
<th>Function</th>
<th>SFF</th>
<th>PFD</th>
<th>λ_{DU}</th>
<th>λ_{DD}</th>
<th>λ_{SU}</th>
<th>λ_{SD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Level/Flow</td>
<td>84%</td>
<td>1.43 x 10^{-3}</td>
<td>326 FIT</td>
<td>178 FIT</td>
<td>1170 FIT</td>
<td>354 FIT</td>
</tr>
<tr>
<td>High Level/Flow</td>
<td>82%</td>
<td>1.63 x 10^{-3}</td>
<td>371 FIT</td>
<td>116 FIT</td>
<td>1120 FIT</td>
<td>417 FIT</td>
</tr>
</tbody>
</table>

**Terminology**

- SFF = Safe Failure Fraction
- PFD = Probability of failure on demand
- λ_{DU} = Failure rate dangerous undetected faults
- λ_{DD} = Failure rate dangerous detected faults
- λ_{SU} = Failure rate safe undetected faults
- λ_{SD} = Failure rate safe detected faults
- FIT = Failure rate in 10^{-9}/hour