Pre-Installation

The ST51 can be specified with integral or remote electronics. The flow element has a serial number etched into the side of the extension pipe as shown in Figure A. The transmitter circuit card has a serial number noted on the board as shown in Figure B. The flow sensor and transmitter circuit have been calibrated as a matched set and should be paired together in service unless otherwise approved by a factory technician.

Flow Direction Alignment

All sensor elements have a flow arrow indicator marked on the element assembly at the reference flat. These flow elements have been calibrated in a particular direction and are designed to be used in service with the flow arrow facing in the same direction as flow in the pipe stream. See Appendix C for orientation and factory calibration details.

Recommended Straight Run

To optimize flow meter system performance, FCI recommends installation with a minimum of 20 pipe diameters upstream straight run and 10 pipe diameters of downstream straight run. Where straight run limitations significantly reduce the available pipe diameters, FCI uses Vortab flow conditioners to produce a transferable flow profile from the calibration installation to actual field installations. FCI’s proprietary AVAL software is available to make flow meter installation evaluations where straight run limitations are considered. See Figure C for recommended installation.

FCI flow meters may be installed with less than the recommended straight run, but may have performance limitations. FCI offers Vortab flow conditioners for use in applications that have significant straight run limitations. FCI uses the AVAL application modeling software to predict meter performance in each installation. AVAL outputs are available to review prior to order placement and will indicate performance expectations both with and without Vortab flow conditioning.
Specifications

Instrument

Media Compatibility: Biogas, Digester Gas, Methane, Natural Gas, Air, Compressed Air, Nitrogen

Pipe/Line Size Compatibility: 2" to 24" [51 mm to 610 mm]

Flow Range: 0.3 sfps to 400 sfps [0.08 mps to 122 mps]

Accuracy: (at >0.75 sfps [>0.21 mmps])
 Standard: ± 2% reading ± 0.5% full scale
 Optional: ± 1% reading ± 0.5% full scale

Repeatability: ±0.5% reading

Temperature Compensation:
 Standard: 40 °F to 100 °F [4 °C to 38 °C]
 Optional: 0 °F to 250 °F [-18 °C to 121 °C]

Turndown Ratio: 3:1 to 100:1

Agency Approvals:

ATEX/UKEX: II 2 G Ex db IIC T6...T1 Gb
 II 2 D Ex tb IIC T85°C...T300°C Db; IP66/IP67
 Ta = -40°C to +65°C

IECEx: Ex db IIC T6…T1 Gb
 Ex tb IIIC T85°C…T300°C Db
 Ta = -40°C to +65°C: IP66/IP67

FM, FMc:
 Class I, Div 1, Groups B, C, D
 Class I, Div 2, Groups A, B, C, D
 Class II/III Div 1, Groups E, F, G
 Type 4X, IP66

CRN No.: 0F0303

Warranty: 1 year

Flow Element

Installation: Insertion, variable length with ½" or ¾" MNPT compression fitting or packing gland.

Type: Thermal Dispersion

Material of Construction: 316L stainless steel body with Hastelloy-C22 thermowell sensors, 316 stainless steel compression fitting with Teflon or stainless steel ferrule, 316L stainless steel packing gland with Teflon or Graphite packing material.

Pressure (Maximum Operating without Damage):
 Compression Fitting:
 Stainless Steel Ferrule: 500 psig [34 barg]
 Teflon Ferrule: 150 psig [10 barg]
 Packing Gland:
 Teflon and Graphite Packing: 500 psig [34 barg]

Operating Temperature:
 Compression Fitting:
 Stainless Steel Ferrule: 0 °F to 250 °F [-18 °C to 121 °C]
 Teflon Ferrule: 0 °F to 200 °F [-18°C to 93 °C]
 Packing Gland:
 Teflon and Graphite Packing: 0 °F to 250 °F [-18 °C to 121 °C]

Process Connection:
 Compression Fitting: ½" MNPT or ¾" MNPT with Stainless Steel or Teflon Ferrule
 Packing Gland: ½" MNPT or ¾" MNPT with Teflon or Graphite Packing

Insertion Length (Field Adjustable):
 1" to 6" [25 mm to 152 mm]
 1" to 12" [25 mm to 305 mm]
 1" to 18" [25 mm to 457 mm]

Flow Transmitter

Enclosure: NEMA 4X [IP67], aluminum, dual conduit ports with either 1/2" Female NPT or M20x1.5 entries. Epoxy coated.

Operating Temperature: 0 °F to 140 °F [-18 °C to 60 °C]

Input Power:
 DC: 18 VDC to 36 VDC (9.6 watts max.)
 AC: 85 VAC to 265 VAC (10 watts max.; CE Mark Approval for 100 VAC to 240 VAC)

Analog Output Signals: Dual 4-20 mA, configurable to flow rate and/or temperature (500 ohms max impedance) and a pulse output for total flow.

Output Pulse Source: Totalized flow or alarm setpoint. 15 VDC. Pulse width at 50% duty cycle for rates 1 to 500 Hz, 0.5 second pulse width for pulse rates below 1 Hz. 25 mA maximum load pulsed, 10 mA maximum load if state set to normally on.

Output Pulse Sink: Totalized flow or alarm set point. Pulse width at 50% duty cycle for rates 1 to 500 Hz, 0.5 second pulse width for rates below 1 Hz. Customer power source and load not to exceed 40 VDC and 150 mA.

Communication Port: RS-232C.

Digital Display: Two-line x 16 character LCD; displays measured value and engineering units. Top line assigned to flow rate, second line user assignable to temperature reading, flow totalizer or alternating. Display can be rotated in 90° increments for optimum viewing orientation.
Installing Flow Element

Compression Fitting Mounting

Caution: The element is shipped with a protective sleeve surrounding the flow element. After removing the sleeve, take care to prevent the element from sliding through the compression fitting and contacting the opposing wall with any force as it may cause damage to the element and potentially upset the calibration.

The ST51 is available with both Teflon compression fitting ferrules and metal ferrules. While the Teflon ferrule configuration can be readjusted, it is possible for over-tightening to cause permanent positioning or damage to the extension pipe that makes future adjustment difficult. While Teflon provides some adjustability, it has a lower process pressure rating and is not designed for continuous adjustments. The metal ferrule version can only be tightened down once and it becomes permanently positioned. The ferrule type is indicated in the instrument part number displayed on the instrument tag. This can be cross referenced to the ordering information sheet.

All flow meters have been calibrated with the flow element located at the centerline of the pipe and flow stream as indicated in Figure D. Couplings and threadolets come in various dimensions. Proper installation requires that the element be measured with consideration to process connection dimensions and pipe centerline. FCI recommends that the element be first installed in the line with the compression fitting lightly tightened around the extension, then slowly move the pipe extension forward until the element is at centerline as shown.

Caution: On top mount installations, particularly, take care to prevent the element from sliding through the compression fitting and contacting the opposing wall with any force as it may cause damage to the element and potentially upset the calibration.

FLOW ELEMENT INSTALLATION & “U” LENGTH ADJUSTMENT

![Diagram of flow element installation](image)

Note: For proper performance install the element so that probe tip is .50 inches [13 mm] past pipe centerline. Instrument is specifically calibrated for centerline referenced installation, which is critical for line sizes 4” [25 mm] and smaller.
To assist in final installation, FCI suggests making a readable mark on the extension pipe to indicate the final desired compression fitting position that will place the element at the centerline reference once the system is tightened down into place. With the compression fitting lightly tightened, hold the element assembly along the outside of the installation, or directly above, to visually check the compression fitting’s centerline installation. To calculate the actual “U” length dimension, take the inside diameter of the pipe or duct divide by 2, then add 0.25”, then add for the pipe wall thickness and the process fitting offset that allows the compression fitting to securely seat in the process port. See Figure D above.

Align the flat parallel to flow and adjust the instrument depth. Upon determination of the final compression fitting location on the extension pipe, apply the proper thread sealant to the NPT threads and firmly tighten the compression fitting into the mating process connection. Torque varies per application. Tighten the compression nut to the torque indicated with the corresponding ferrule material. Manufacturer recommends 1-1/4 turns from hand-tight baseline.

<table>
<thead>
<tr>
<th>Ferrule</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon</td>
<td>65 in-lbs</td>
</tr>
<tr>
<td>316 SST</td>
<td>65 ft-lbs</td>
</tr>
</tbody>
</table>

Retractable Packing Gland Mounting

A retractable packing gland, with ½” MNPT or ¾” MNPT threads and graphite or Teflon packing, is a process connection option. FCI single point flow meters are calibrated at the centerline of the process pipe. The flow element is properly mounted when the tip of the flow element is located .50 inches (13 mm) past the pipe centerline. Follow the below steps to install/retract instruments with the retractable packing gland option.

1. The scale etched on the side of the insertion probe indicates the length to the tip of the flow element. Calculate the insertion depth using the equation, variables, and Figure E below.

\[
IN\text{ser}T\text{ion DEPTH} = .50 \text{ inches} + \left(\frac{I.D.}{2} \right) + T + C
\]

2. Mark the insertion pipe at the calculated insertion depth.

3. **Ball Valve Applications Only**: If a ball valve is required, install the ball valve to the process mounting coupling. Close the ball valve to prevent the process media from leaking out when installing the packing gland with the process line pressurized.

4. Apply the proper thread sealant compatible with the process media to the male threads of the packing gland. Fully retract the insertion probe into the cavity of the packing gland and install the packing gland into the process mounting coupling or ball valve. **If a ball valve is not used, make sure to first depressurize the process line before installing.**
5. Tighten the packing nut until the internal packing is tight enough to prevent excess process leakage, but also allow the insertion probe to be inserted into place. For ball valve applications, open the ball valve after the packing nut has been tightened.

Caution: For applications where the process media is pressurized to greater than 232 psig [16 bar(g)] make sure to first depressurize the process line before making the insertion.

6. Align the orientation flat and flow arrow parallel to the flow direction and proceed to insert the flow element into the process media pipe up to the insertion depth mark.

7. Tighten the packing nut another ½ to 1 turn tight (approximately 20 ft-lbs) until the packing has created a full seal.

8. Ensure the locking collar is properly secured to the back of the packing gland. Torque the two No. 8-32 socket head cap screws on the locking collar to 20 in-lbs using a 9/64” hex key.

Retraction/Removal Procedure

1. Loosen the socket head cap screw on the side of the locking collar. See Figure F below.

 ![Figure F](image)

 Caution: For applications where the process media is pressurized to greater than 232 psig [16 bar(g)] make sure to first depressurize the process line before retracting the flow element. At 232 psig [16 bar(g)], the effective force on the insertion probe is 45.5 lbs (20.6 kg), which is the limit at which the flow element can be safely guided by hand. When using hands to restrain the retraction, be prepared for a rapid pressure impulse of the flow element. Make sure that there are no objects directly behind the flow element as the insertion probe may retract very quickly.

2. Slowly loosen the packing nut until the insertion probe begins to retract. Use hands as needed to help control the retraction. If the probe does not begin to retract itself, gently shake and pull the insertion probe until the flow element has been fully retracted into the packing gland.

3. For ball valve applications, close the ball valve immediately after retraction to seal off the process. After closing the ball valve it is then safe to remove the flow element from the back end of the ball valve. **If a ball valve is not being used, make sure to first depressurize the process line before removing the flow element.**
Instrument Wiring

Before the instrument is opened to connect power and signal, FCI recommends that the following ESD precautions be observed:

Use a wrist band or heel strap with a 1 megohm resistor connected to ground. If the instrument is in the shop setting, there should be a static conductive mat on the work table or floor with a 1 megohm resistor connected to ground. Connect the instrument to ground. Apply antistatic agents such as Static Free made by Chemtronics (or equivalent) to hand tools to be used on the instrument. Keep high static producing items away from the instrument.

The above precautions are minimum requirements. The complete use of ESD precautions can be found in the U.S. Dept of Defense Handbook 263.

Warning: Only qualified personnel are to wire or test this instrument. The operator assumes all responsibility for safe practices while wiring and troubleshooting.

Install an input power disconnect switch and fuse near the instrument to interrupt power during installation and maintenance. Operator must have power disconnected before wiring.

See the “Specific Conditions of Use” and “Safety Instructions” sections in Appendix A for use of the ST51/ST75 series (AC and DC versions) in Hazardous Areas Category II (Zone 1).

Input Power

The ST51 is available with both VDC and VAC input power configurations. Customers selecting VDC input power will have a VDC input board only. Similarly, the VAC power board is supplied only with VAC powered units. In addition, both boards are marked for either DC or AC power. Only connect the power specified on the wiring module as shown in Figures G and H respectively. Both DC and AC inputs require a Gnd wire to be connected. Input power terminal blocks accept 14-26 AWG wire.

Make sure power is OFF before wiring the instrument. Pull the power and signal output wires through the port, using care not to damage wires. FCI recommends using crimp lugs on the output wires to ensure proper connection with the terminal strip. Connect the output wires as shown on Figures G and H. Note that when the 4-20 mA outputs are used simultaneously, a single return lead is used.

Analog Output

4-20mA: The instrument is provided with two 4-20 mA outputs. By default Output 1 is configured for flow and Output 2 is configured for temperature. Terminal blocks accept 14-28 AWG wires, 500 ohms max. load per output.
Pulse Output Activation

The ST51 provides a pulse output feature. Instruments ordered with volumetric or mass flow units will be factory set with totalizer and pulse output activated. The mode can be changed in the field. Source and sink output wiring is shown in Figures G and H below. Though only one configuration is shown with the VAC and VDC power supplies, the source or sink can be used with either power input.

Sink Mode: 40 VDC max, 150 mA max. Customer supplied power source.

Source Mode: 15 VDC output, 50 mA max.

VDC Power

As Shown:
- 18-36 VDC power connected with gnd
- 4-20 mA connected for flow and temperature
- Pulse Out in source mode

Note: In source mode, 15 VDC Output max, 50 mA max.

VAC Power

As Shown:
- 85-265 VAC power connected with gnd
- 4-20 mA connected for flow and temperature
- Pulse Out in sink mode

Note: In sink mode, 40 VDC max, 150 mA max customer supplied power source.

Power Dissipation

DC Version

Power dissipation values under nominal conditions:
- Instrument (Electronics + Sensor): 4.5 watts
- Sensor only: 0.25 watts

Power dissipation values under max. load conditions:
- Instrument (Electronics + Sensor): 6 watts
- Sensor only: 0.30 watts

AC Version

Power dissipation values under nominal conditions:
- Instrument (Electronics + Sensor): 11.6 watts
- Sensor only: 0.25 watts

Power dissipation values under max. load conditions:
- Instrument (Electronics + Sensor): 12 watts
- Sensor only: 0.30 watts
Setup Interface

All parameters on this meter are set through the RS232 interface connection (modular jack P3). The RS232 interface allows the instrument to be set up with either an FC88 hand held communicator or a computer. The FC88 is powered through the meter and comes with the serial interface cable. If a computer interface is used, an adapter (RJ to 9-pin PC serial port) is required. The adapter can be obtained from FCI: Part No. 014108-02.

Using a serial comm/terminal program (e.g., HyperTerminal, TeraTerm, Putty, etc.) configure the PC’s serial port (the one intended to be connected to the instrument) as listed below.

- **COM Port Number**: Number of COM port connected to instrument (COM1, COM2, etc.)
- **Baud Rate**: 9600
- **Number of Bits**: 8
- **Stop Bits**: 1
- **Parity**: None
- **Flow Control**: None
- **Terminal Emulation**: VT100

After configuring the serial port (and making the PC-to-instrument connections) start a communications session with the applicable serial port. Enter any of the meter’s single letter commands in the program’s terminal window to execute a function. See “Table 5. ST51 List of Single Letter Commands” on page 23 (Appendix B) for the complete command list.

An additional command line interface (CLI) is available through the RS232 port. This interface is accessed with the “Y” command using a computer or FC88. The command line password is “357.” See “Table 6. ST51 List of CLI Commands” on page 23 in Appendix B for command line details.
Startup and Commissioning

1. Verify all input power and output signal wiring is correct and ready for initial power startup.
2. Apply power to instrument. The instrument initializes in the Normal Operation Mode with all outputs active. An instrument with the display option will show flow with the factory-set flow units. Allow 10 minutes for the instrument to warm up and reach thermal equilibrium.

Note: Thirty (30) minute warm-up required before calibration check.

The following FC88 commands are typical commands that are used during startup and commissioning:

<table>
<thead>
<tr>
<th>Command</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Normal Operation Mode</td>
<td>All outputs are active</td>
</tr>
<tr>
<td>Z</td>
<td>Flow Unit Setup</td>
<td>Select Flow Units (5 English, 8 Metric), Pipe Dimensions</td>
</tr>
<tr>
<td>W</td>
<td>Totalizer</td>
<td>Enable/Disable</td>
</tr>
<tr>
<td>V</td>
<td>Output Configuration</td>
<td>Select a configuration: Pulse and/or Alarm, Pulse factor and/or setpoint, and source/sink polarity.</td>
</tr>
<tr>
<td>F</td>
<td>K-Factor (default = 1)</td>
<td>Flow factor</td>
</tr>
<tr>
<td>N</td>
<td>Warm Reset</td>
<td>Reinitialize C/B</td>
</tr>
<tr>
<td>S</td>
<td>Totalizer Menu</td>
<td>Enables W menu (Option)</td>
</tr>
</tbody>
</table>

An installed instrument indicates 0.000 with the process flow at zero. The flow engineering units are indicated on the instrument bezel. Additional units indicators are provided via self-adhesive labels if the instrument’s flow units are changed in the future.

Flow Unit Modification

Example: SCFM Flow Units and 3-inch Sch 40 round pipe size set up:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>E for English M for Metric></td>
<td>Flow Unit Set-up menu</td>
</tr>
<tr>
<td>E</td>
<td>0=SFPS, 1=SCFM, 2=SCFH, 3=LB/H, 4=GPM #</td>
<td>English units</td>
</tr>
<tr>
<td>I</td>
<td>R round duct or S rectangular></td>
<td>Select standard cubic ft./minute (SCFM)</td>
</tr>
<tr>
<td>R</td>
<td>Dia.: 4.0260000 Change? (Y/N)></td>
<td>Select Round Duct</td>
</tr>
<tr>
<td>Y</td>
<td>Enter value: #</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Maximum flow: 462.04 Enter to continue</td>
<td>3-inch Sch. 40 pipe I.D.</td>
</tr>
<tr>
<td>Y</td>
<td>Cmaxflow: 462.04 Change? (Y/N)></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>462.04 CMIntemp (F): -40.00000 Change? (Y/N)></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>CMMaxtemp (F): 250.00000 Change? (Y/N)></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Percent of Range is: OFF Change to ON?></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>LCD Mult Factor x1 Change? (Y/N)></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>100.0 SCFM Instrument back in Normal Operation Mode</td>
<td></td>
</tr>
</tbody>
</table>
RS232 / FC88

Menu Control and Organization

Most entries require at least two key strokes; a capital letter and the [ENTER] key, or one or more numbers and the [ENTER] key. All user entries begin at the input mode prompt “>”, except when the instrument is in the Main Function Mode (just press the desired function letter and [ENTER] to make an entry).

Backspaces are made using the backspace [BKSP] key. Some entries are case sensitive between numbers and letters. Be sure the SHIFT key is pressed to indicate the correct case. A square after the prompt caret indicates the FC88 is in lower case. A slightly raised rectangle in the same spot indicates the FC88 is in the upper case.

It is recommended that the FC88 be plugged into the instrument before power is applied. If the FC88 is plugged in while the instrument power is ON and the FC88 does not respond, press [ENTER]. If there is still no response press [N] or cycle the power.

Note: The Zero and Span may be changed from the original calibration, provided the new values are within the original calibrated range; i.e., if the original calibration was 1 to 100 SCFM (4-20 mA), the new zero (4 mA) must be equal to or greater than 1 SCFM, and the new span (20 mA) must be equal to or less than 100 SCFM.

Some entries require a Factory pass code. If this occurs contact FCI Field Service to continue programming the instrument. The instrument will prompt the user when this is necessary. Do not change any parameters that require this code unless there is an absolute understanding of the instrument’s operation. The user cannot exit some routines unless all entries are completed or the power is cycled.

Note: Always press “T” before unplugging the FC88. If a frozen meter display is observed, reconnect the FC88 and wait 5 seconds for the meter to initialize. Disconnect the FC88 and confirm your meter display is varying.

The top level of the menu is shown in “Table 5. ST51 List of Single Letter Commands” on page 23. Enter the command letter mnemonic as listed in the tables below and in Appendix B to run a command. Exit a command at any time by entering “Q" [ENTER] in the menus D, K, V, W, or Z.

Table 1. Diagnostics and Factory Settings

C	Calibration Information
	Display only: A/D, Delta-R, Ref-R data values.
D	Diagnostics
	Display only: List of unit parameters.
K	Factory Calibration Settings
	Display only: Cal. parameters; i.e., linearization and temperature compensation coefficients.
R	Factory Reset
	Replaces user data with factory calibration data

Table 2. “Z” Flow Units Set-Up and Scaling

<table>
<thead>
<tr>
<th>Units</th>
<th>Select</th>
<th>E=English</th>
<th>M=Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>0= SFPS</td>
<td>5 = SMPS</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>1 = SCFM</td>
<td>6 = NCMH</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>2 = SCFH</td>
<td>7 = NCMM</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>3 = LBS/H</td>
<td>8 = KG/H</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>4 = GPM</td>
<td>9 = LPM</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>10 = SCMH</td>
<td>11 = NMPS</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>12 = SCMM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Volumetric or Mass Flow

Select	R = Round pipe or duct
or	S = Square duct
Set	Diameter or Wide X High (in inches or mm)
Set	CMaxflow = Maximum flow rate (span)
Set	CMinflow = Minimum flow rate (zero)

Note: Changing units requires rescaling the unit (set new zero and span).

Table 3. V Menu – Output Configuration Setup

<table>
<thead>
<tr>
<th>Select 4-20 mA Output Configuration</th>
<th>Select 4-20 mA Output Configuration 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 4-20 mA Output Configuration</td>
<td>Select 4-20 mA Output Configuration 1</td>
<td>Select 4-20 mA Output Configuration 2</td>
<td>Select 4-20 mA Output Configuration 3</td>
<td>Select 4-20 mA Output Configuration 4</td>
</tr>
<tr>
<td>Select</td>
<td>Source = Pulse Sink = Pulse</td>
<td>Source = Pulse Sink = Alarm1</td>
<td>Source = Alrm0 Sink = Pulse</td>
<td>Source = Alrm0 Sink = Alarm1</td>
</tr>
<tr>
<td>Set</td>
<td>PFactor</td>
<td>PFactor</td>
<td>PFactor</td>
<td>Switchpoint0</td>
</tr>
<tr>
<td>Set</td>
<td>Sample Period</td>
<td>Sample Period</td>
<td>Sample Period</td>
<td>Source state</td>
</tr>
<tr>
<td>Set</td>
<td>Source state</td>
<td>Source state</td>
<td>Switchpoint0</td>
<td>Switchpoint1</td>
</tr>
<tr>
<td>Set</td>
<td>Sink state</td>
<td>Switchpoint1</td>
<td>Source state</td>
<td>Sink state</td>
</tr>
<tr>
<td>Set</td>
<td>n/a</td>
<td>Sink state</td>
<td>Sink state</td>
<td>n/a</td>
</tr>
</tbody>
</table>
“V” Menu Output Configuration Setup

Use the V menu to set up the 4-20 mA analog outputs (including NAMUR configuration) and source/sink (pulse) outputs.

Note: The display comes up to the last setting saved and stays for 2 seconds. If N or [ENTER] is entered, the menu proceeds to the Pulse out. If Y is entered, the display moves to the selection options and/or asks for confirmation. If you miss the option, select [Enter] repeatedly to loop around.

Analog Out

<table>
<thead>
<tr>
<th>Output Mode Selected</th>
<th>NAMUR Mode Selected</th>
<th>Source:</th>
<th>Sink:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA #1: Flow</td>
<td>NAMUR: Off</td>
<td>Alarm0</td>
<td>Pulse</td>
</tr>
<tr>
<td>4-20 mA #2: Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change? (Y/N)>

- **4-20 mA #1:** Flow
 - Enter 1 to make the selection

- **4-20 mA #2:** Temp
 - Enter 2 to make the selection

Pulse Out

<table>
<thead>
<tr>
<th>Source:</th>
<th>Sink:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>Pulse</td>
</tr>
</tbody>
</table>

Change? (Y/N)>

- **Source:** Pulse
 - Enter 1 to make the selection

- **Sink:** Pulse
 - Enter 2 to make the selection

Example: COMMAND V (Reference Table 3)

Case: 4-20 mA #1 = Flow, 4-20 mA #2 = Temperature, NAMUR = Low, Source Out = Pulse, Sink = Alarm1

Pressing [V] [ENTER] will display **“Output Mode Selected”**:

The last saved mode of the next menu item displays:

- **“4-20 mA #1 = Flow”**
- **“4-20 mA #2 = Temp”**

...followed by the prompt:

- **“Change? (Y/N)”**

Press [ENTER] (no change).

The last saved mode of the next menu item displays:

- **“NAMUR: Off”**

Select Y [Enter].

The display reads,

- **“NAMUR: Off”**

...followed by the prompt:

- **“Enter 1 to make the selection #.”**

Select [ENTER]

Bypassing “1” the next display reads,

- **“NAMUR: Low”**

...followed by the prompt:

- **“Enter 2 to make the selection #.”**

Select 2 and [ENTER]

“The last saved mode of the next menu item displays:

- **“Source: Pulse”**

“Sink: Pulse”

...followed by the prompt:

- **“Change? (Y/N)”**

Select Y [Enter].

The display reads,

- **“Source: Pulse”**

“Sink: Pulse”

...followed by the prompt:

- **“Enter 1 to make the selection #.”**

Select [ENTER].

Bypassing “1” the next display reads,

- **“Source: Pulse”**

“Sink: Alarm1”

...followed by the prompt:

- **“Enter 2 to make the selection #.”**

Select 2 and [ENTER].

The last saved mode of the next menu item displays:

- **“P Factor: 1.000”**

...followed by the prompt:

- **“Change? (Y/N)>”**

Respond with “Y” to enter a factor anywhere from 0.001 to 1000. A pulse factor of 1.000 outputs 1 pulse per unit of flow. If no change, select N and/or [ENTER] to continue.
The last saved mode of the next menu item displays:

“Sample Period”
“Change? (Y/N)?>”

...followed by the prompt:
Respond with “Y” to enter a sample period value from 0.5 to 5 seconds.

If no change, select N and/or [ENTER] to continue.

The last saved mode of the next menu item displays:

“Source state: ”
“High to Low”
Change to “Low to High?>”

If no change, select N and/or [ENTER] to continue.

The last saved mode of the next menu item displays:

“Switchpt1”
“0.000000”
“Change? (Y/N)?>”

If no change, select N and/or [ENTER] to continue.

The last saved mode of the next menu item displays:

“Sink state: ”
“High to Low”
Change to “Low to High?>”

If no change, select N and/or [ENTER] to continue to normal operation (programming finished).

Maintenance

The FCI instrument requires little maintenance. There are no moving parts or mechanical parts subject to wear in the instrument. The sensor assembly, which is exposed to the process media, is composed of 316 SS and Hastelloy C.

Without detailed knowledge of the environmental parameters of the application surroundings and process media, FCI cannot make specific recommendations for periodic inspection, cleaning, or testing procedures. However, some suggested general guidelines for maintenance steps are offered below. Use operating experience to establish the frequency of each type of maintenance.

Calibration
Periodically verify the calibration of the output and recalibrate if necessary. FCI recommends every 18 months at a minimum.

Note: Thirty (30) minute warm-up required before calibration check.

Electrical Connections
Periodically inspect cable connections on terminal strips and terminal blocks. Verify that terminal connections are tight and physically sound with no sign of corrosion.

Remote Enclosure
Verify that the moisture barriers and seals protecting the electronics in the local enclosure is adequate and that no moisture is entering the enclosure.

Electrical Wiring
FCI recommends occasional inspection of the system’s interconnecting cable, power wiring and flow element wiring on a “common sense” basis related to the application environment. Periodically inspect the conductors for corrosion and check the cable insulation for signs of deterioration.

Flow Element Connections
Verify that all seals are performing properly and that there is no leakage of the process media. Check for deterioration of the gaskets and environmental seals used.

Insertion Type Flow Element Assembly
Periodically remove the flow element for inspection based on historical evidence of debris, foreign matter, or scale build-up and appropriate plant shutdown schedules and procedures. Check for corrosion, stress cracking, and/or build-up of oxides, salts, or foreign substances. The thermowells must be free of excessive contaminants and be physically intact. Any debris or residue build-up could cause inaccurate flow indication. Clean the flow element, as necessary, with a soft brush and available solvents (compatible with stainless steel).
Troubleshooting

Application Verification
After verifying that the flow meter is functioning, review the application parameters as shown below to verify the calibration matches the process media.

Equipment Needed
Flow Instrument Calibration Data
Process Parameters and Limits

Check Serial Numbers
Verify that the serial number of the flow element and the flow transmitter electronics are the same. The flow element and the flow transmitter are a matched set and cannot be operated independently of each other.

Check the Instrument Installation
Verify correct mechanical and electrical installation. Verify the flow element is mounted at least 20 diameters downstream and 10 diameters upstream from any bends or interference in the process pipe or duct.

Check for Moisture
Check for moisture on the flow transmitter. Moisture may cause intermittent operation. Check for moisture on the flow element. If a component of the process media is near its saturation temperature it may condense on the flow element. Place the flow element where the process media is well above the saturation temperature of any of the process gases.

Check Application Design Requirements
Application design problems may occur with first time application instruments, although the design should also be checked on instruments that have been in operation for some time. If the application design does not match field conditions, errors occur.

1. Review the application design with plant operation personnel and plant engineers.
2. Ensure that plant equipment such as pressure and temperature instruments conform to the actual conditions.
3. Verify operating temperature, operating pressure, line size, and gas medium.

Verify Standard Versus Actual Process Conditions
The flow meter measures the mass flow rate. The mass flow rate is the mass of the gas flowing through a pipe per time. Other flow meters, such as an orifice plate or a pitot tube, measure the volumetric flow rate. The volumetric flow rate is the volume of gas per time. If the readings displayed do not agree with another instrument, some calculations may be necessary before comparing them. To calculate the mass flow rate, the volumetric flow rate, and the pressure and temperature, the point of measurement must be known. Use the following equation to calculate the mass flow rate (Standard Volumetric Flow rate) for the other instrument:

Equation:

\[
Q_s = Q_s \times \frac{P_s}{P_a} \times \frac{T_s}{T_a}
\]

Where:

- \(Q_s\) = Volumetric Flow
- \(Q_s\) = Standard Volumetric Flow
- \(P_a\) = Actual Pressure
- \(T_a\) = Actual Temperature
- \(P_s\) = Standard Pressure
- \(T_s\) = Standard Temperature

PSIA and °R are used for pressure and temperature units.

Example: (Metric: Where bar(a) and °K are used for pressure and temperature.)

\[
\begin{align*}
Q_s &= 1212.7 \text{ ACFM} \\
Q_s &= 1485 \text{ SCFM} \\
P_a &= 9.7 \text{ PSIA} \\
T_a &= 120 ^\circ \text{F (580 °R)} \\
P_s &= 14.7 \text{ PSIA} \\
T_s &= 70 ^\circ \text{F (530 °R)} \\
\end{align*}
\]

\[
\left(\frac{1212.7 \text{ ACFM}}{1}\right) \left(\frac{19.7 \text{ PSIA}}{580 \text{ °R}}\right) \left(\frac{530 \text{ °R}}{14.7 \text{ PSIA}}\right) = 1485 \text{ SCFM}
\]
Calibration Parameters Verification

The instrument uses a set of predetermined calibration parameters to process flow signals. Most of these parameters should not change. A data package included with the instrument (typically on a CD-ROM) contains the ST51 Delta R Data Sheet. The data sheet contains the calibration parameters stored in the flow transmitter at the factory. To verify that these parameters have not changed, complete the following:

1. Identify the appropriate Delta R data sheets by instrument serial number.
2. Press [D] [ENTER] to examine each of the parameters. The [ENTER] key allows scrolling one message at a time. Use Table 4 below to record actual instrument parameters. Compare with the Delta R data sheet’s ST51 parameters.

An issue may exist if parameters with an asterisk (*) have changed. Contact Customer Service if this is the case. If the parameters have not changed, continue with the next section.

Table 4. Diagnostic Test Sequence on Display

<table>
<thead>
<tr>
<th>S/W Version:</th>
<th>dR Min:</th>
<th>T SpanIDAC 0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Factor:</td>
<td>dR Max:</td>
<td>T ZeroIDAC 0:</td>
</tr>
<tr>
<td>Cmin Flow:</td>
<td>Cal Ref:</td>
<td>T SpanIDAC 1:</td>
</tr>
<tr>
<td>Cmax Flow:</td>
<td>Tsrlp:</td>
<td>T ZeroIDAC 1:</td>
</tr>
<tr>
<td>Eng Units:</td>
<td>Tsrlp 0:</td>
<td>State 0:</td>
</tr>
<tr>
<td>Line Size 0:</td>
<td>Tsrlp 2:</td>
<td>Switch Pt 0:</td>
</tr>
<tr>
<td>Line Size 1:</td>
<td>Tot Menu:</td>
<td>State 1:</td>
</tr>
<tr>
<td>Cmin Temp:</td>
<td>Tot Flag:</td>
<td>Switch Pt 1:</td>
</tr>
<tr>
<td>Cmax Temp:</td>
<td>Totalizer:</td>
<td>K factor 1:</td>
</tr>
<tr>
<td>Min Flow:</td>
<td>Rollover Cnt:</td>
<td>K factor 2:</td>
</tr>
<tr>
<td>Max Flow:</td>
<td>Fix Pt Flag:</td>
<td>K factor 3:</td>
</tr>
<tr>
<td>Density:</td>
<td>Pulse Factor:</td>
<td>K factor 4:</td>
</tr>
<tr>
<td>*C1 [1]:</td>
<td>Pulse Out:</td>
<td>I factor:</td>
</tr>
<tr>
<td>*C1 [2]:</td>
<td>Hours:</td>
<td>Temp Flag:</td>
</tr>
<tr>
<td>*C1 [3]:</td>
<td>Sample Period:</td>
<td>Out Mode:</td>
</tr>
<tr>
<td>*C1 [4]:</td>
<td>dR Slope:</td>
<td>Namurmode:</td>
</tr>
<tr>
<td>*C1 [5]:</td>
<td>dR Off Set:</td>
<td>Boxcar Max:</td>
</tr>
<tr>
<td>Break Pt:</td>
<td>Refr Slope:</td>
<td>RTD-SLP-385:</td>
</tr>
<tr>
<td>*C2 [1]:</td>
<td>Refr Off Set:</td>
<td>% of Range:</td>
</tr>
<tr>
<td>*C2 [2]:</td>
<td>SpanIDAC 0:</td>
<td>User Name:</td>
</tr>
<tr>
<td>*C2 [3]:</td>
<td>ZeroIDAC 0:</td>
<td>Shop Order #:</td>
</tr>
<tr>
<td>*C2 [4]:</td>
<td>SpanIDAC 1:</td>
<td>Serial No.:</td>
</tr>
<tr>
<td>*C2 [5]:</td>
<td>ZeroIDAC 1:</td>
<td>Model #:</td>
</tr>
</tbody>
</table>
Hardware Verification

Equipment Required:

- Digital Multimeter
- Screwdriver

The ST51 flow meter is made up of these basic components:

- Sensor element
- Customer interface circuit board
- Control circuit assembly circuit board module
- Electronics enclosure

Step 1

Verify fuse (F1) located on the customer interface circuit board is in normal working condition.

Remove power from the instrument. Open the electronics enclosure exposing the customer interface circuit board. This circuit board is located under the shorter enclosure lid along with all of the power and input/output connections. Unscrew the clear cover on the fuse and pull the fuse out of the fuse holder. Check the fuse for continuity. If fuse reads open, replace with equivalent component (FCI part no. 019933-01), Wickmann Inc. Series 374, 1.6 A (amp code 1160), package 0410 (short radial leads).

Step 2

Verify interconnecting cable from the customer interface board and the control circuit board assembly module are correctly seated into the appropriate header.

Remove power from the instrument. Open the electronics enclosure exposing the customer interface circuit board. This circuit board is located under the shorter enclosure lid along with all of the power and input/output connections. Remove the 2 screws securing the interface circuit board to the electronics enclosure. Carefully lift the interface face board exposing the interconnecting cable between the interface board and the control circuit assembly. Verify cable is seated firmly at both ends of the cable header.
Step 3

Verify sensor element continuity and resistance.

Remove sensor element cable from the bottom of the control circuit assembly. Note that 2 of the wires have a red stripe and are located closest to the interconnecting cable header. Using an ohmmeter verify that resistance between the 2 red striped wires is approximately 1100 ohms ±20. This resistance is temperature dependant. The resistance at 70 degrees F is about 1082 ohms. Verify the resistance between the 2 natural colored wires are approximately the same.

FCI provides full in-house technical support. Additional technical representation is also provided by FCI field representatives. Before contacting a field or in-house representative perform the troubleshooting techniques outlined in this document. If problems persist, contact FCI Customer Service at 1-800-854-1993 or 1-760-744-6950.

Contact FCI to obtain an Return Authorization before returning the instrument. The form contains a declaration of decontamination cleaning information with which the instrument must comply before it is shipped to FCI.
Transmitter Circuit Calibration Check (Delta R Verification)

References
- Delta ‘R’ Data Sheet

Equipment
- FC88 Communicator or equivalent.
- DMM
- Delta R Data Sheet – Match by serial numbers
- 2 ea. precision decade resistance boxes, 0.01% (Largest steps: 1k ohm, smallest steps 0.01 ohms)
- Small flat blade screwdriver, 3/32 inches wide blade
- FCI normalization cable, FCI part number 006407

Procedure

Note: Thirty (30) minute warm-up required before calibration check.

1. Verify all “D” mode calibration parameters are correct according to the meter’s Delta R data sheet before starting verification.
2. Turn power OFF.
3. Mark all sensor element wires connected to the circuit board for easy reconnection to the proper terminals. Disconnect the wires.
4. Connect the resistance decade box to the electronics as per the appropriate wiring diagram for the ST51.

Note: Interconnector wiring (resistance decade box to electronics) must be same gauge and length to avoid any inaccuracies in the Delta R verification caused by unequal wire lengths and/or wire gauges.

5. Set both decade boxes for the nominal resistance value (1000 ohms) ±0.01%
6. Connect DMM, set to volts DC (V), to the meter’s output termination and monitor the meter output.
7. Turn power ON and allow the instrument 5 minutes to stabilize.
8. With the FC88 connected press [T] [Enter] to view the normal operating mode.
9. Adjust the Active Decade Box (Reference decade box remains fixed @ 1000 ohms) to achieve the appropriate Delta R for the displayed flow value and output, noted on the meter’s Delta R data sheet.
10. Note the [C] mode and verify the meters displayed TCDR and REFR values corresponding to the displayed flow rate as per the meter’s Delta R data sheet.
11. Return to normal mode operation ([T] mode).
Appendix A - Approval Information

Specific Conditions of Use per FM16ATEX0008X / FM22UKEX0033X

1. The ambient temperature range and applicable temperature class of the sensor probe is based on the maximum process temperature for the particular application as follows; T6…T1 for \(T_{\text{ambient}} \) of -40 °C to +65 and \(T_{\text{process}} \) of -40 °C to +260 °C. Probe assembly design temperatures are part number dependent. Low temperature models have design temperatures from -40°C to +121°C. Medium temperature models have design temperatures from -40 °C to +260 °C.

2. Process Temperature: Maximum process temperature range is -40 °C to +260 °C. Process temperature varies for flow element installed. The relationship between the temperature class, the maximum surface temperature and the process temperature is as follows:

 Sensing Element:
 - T6 / T85°C for a process temperature range of -40 °C to +39 °C
 - T5 / T100°C for a process temperature range of -40 °C to +54 °C
 - T4 / T135°C for a process temperature range of -40 °C to +89 °C
 - T3 / T200°C for a process temperature range of -40 °C to +154 °C
 - T2 / T300°C for a process temperature range of -40 °C to +177 °C
 - T1 for a process temperature range of -40 °C to +260 °C

3. Consult the manufacturer if dimensional information on the flameproof joints is necessary.

4. The painted surfaces of the Mass Flow Meter may store electrostatic charge and become a source of ignition in applications with a low relative humidity <~30% relative humidity where the painted surface is relatively free of surface contamination such as dirt, dust, or oil. Guidance on protection against the risk of ignition due to electrostatic discharge can be found in IEC TR60079-32 (in preparation). Cleaning of the painted/unpainted surface should only be done with a damp cloth.

5. The probe when remotely located from the enclosure has flying lead conductors that requires the remote probe to be connected to a suitably certified Ex d or Ex e terminal box for connecting to the external supply circuit.

6. Customer to supply wire rated 10 °C minimum above maximum ambient temperature of installation location to a suitably certified Ex d or Ex e terminal box.

Safety Instructions for the use of the ST51/75 flow meter in Hazardous Areas

Approval FM16ATEX0008X / FM22UKEX0033X / IECEX FMG 16.0009X for:

Category II 2 G for Gas protection Ex db IIC T6...T1 Gb
Category II 2 D for Dust protection Ex tb IIIC T85°C...T300°C Db; IP66/IP67

The ST51/75 series consist of a sensing element and associated integral or remote mounted electronics mounted in a type “d” flameproof enclosure.

Relation between ambient temperature, process temperature, and temperature class is as follows:

- Ambient temperature range (\(T_a \)): T6/T85°C for: -40°C < \(T_a < +65°C \)
- Process temperature range (\(T_p \)): T6 / T85°C: -40°C < \(T_p < +39°C \)
 - T5 / T100°C: -40°C < \(T_p < +54°C \)
 - T4 / T135°C: -40°C < \(T_p < +89°C \)
 - T3 / T200°C: -40°C < \(T_p < +154°C \)
 - T2 / T300°C: -40°C < \(T_p < +177°C \)
 - T1: -40°C < \(T_p < +260°C \)

Electrical data: Power supply: 85 to 265 VAC, 50/60 Hz, 10 W; 18–36 VDC, 9.6 W.
Dansk – Sikkerhedsforskrifter

Disse sikkerhedsforskrifter gælder for Fluid Components, ST51/75 EF-typeafprøvningsattest-nr. FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X attestens nummer på typeskiltet) er egnet til at blive benyttet i eksplosiv atmosfære kategori II 2 GD.

1) Ex-anlæg skal princippet opstilles af specialiseret personale.

2) ST51/75 skal jordforbindes.

3) Klemmerne og elektronikken er monteret i et hus, som er beskyttet af en eksplosionsssikker kapsling med følgende noter:
 • Gevindspalten mellem huset og låget er på en sådan måde, at lid ikke kan brede sig inden i det.
 • Ex-”d” tilslutningshuset er forsynet med et ½” NPT og/eller M20x1.5 gevind for montering af en Ex-”d” kabelindføring, der er attestieret iht IEC/EN 60079-1.
 • Det er vigtigt at sørge for, at forsyningsledningen er uden spænding eller eksplosiv atmosfære ikke er til stede, før låget åbnes og når låget er åbent på ”d” huset (f.eks. ved tilslutning eller servicearbejde).
 • Låget på ”d” huset skal være skruet helt ind, når apparatet er i brug. Det skal sikres ved at dreje en af låseskruerne på låget ud.

Deutsch – Sicherheitshinweise

Diese Sicherheitshinweise gelten für die Fluid Components, ST51/75 flow meter gemäß der EG-Baumusterprüfbescheinigung Nr. FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X (Bescheinigungsnummer auf dem Typschild) der Kategorie II 2 GD.

1) Die Errichtung von Ex-Anlagen muss grundsätzlich durch Fachpersonal vorgenommen werden.

2) Der ST51/75 muß geerdet werden.

3) Die Klemmen und Elektroniken sind in einem Gehäuse in der Zündschutzart druckfeste Kapselung (”d”) eingebaut.
 • Der Gewindespalt zwischen dem Gehäuse und dem Deckel ist ein zünddurchschlagsicherer Spalt.
 • Das Ex-”d” Anschlussgehäuse besitzt ein 1/2” NPT und/oder M20x1.5 Gewinde für den Einbau einer nach IEC/EN 60079-1 bescheinigten Ex-”d” Kableinführung.
 • Es ist sicherzustellen, dass vor dem Öffnen und bei geöffnetem Deckel des ”d” Gehäuses (z.B. bei Anschluss oder Service-Arbeiten) entweder die Versorgungsleitung spannungsfrei oder keine explosionsfähige Atmosphäre vorhanden ist.
 • Der Deckel des ”d” Gehäuses muss im Betrieb bis zum Anschlag hineingedreht sein. Er ist durch eine der Deckelarretierungs schrauben zu sichern.

English – Safety instructions

These safety instructions are valid for the Fluid Components, ST51/75 flow meter to the EC type approval certificate no FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X (certificate number on the type label) for use in potentially explosive atmospheres in Category II 2 GD.

1) The installation of Ex-instruments must be made by trained personnel.

2) The ST51/75 must be grounded.

3) The terminals and electronics are installed in a flame proof and pressure-tight housing with following notes:
 • The gap between the housing and cover is an ignition-proof gap.
 • The Ex-”d” housing connection has a ½” NPT and/or M20x1.5 cable entry for mounting an Ex-d cable entry certified according to IEC/EN 60079-1.
 • Make sure that before opening the cover of the Ex-”d” housing, the power supply is disconnected or there is no explosive atmosphere present (e.g. during connection or service work).
 • During normal operation: The cover of the “d” housing must be screwed in completely and locked by tightening one of the cover locking screws.
Nederlands – Veiligheidsinstructies

Deze veiligheidsinstructies gelden voor de Fluid Components, ST51/75 overeenkomstig de EG-typeverklaring nr. FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X (nummer van de verklaring op het typeplaatje) voor gebruik in een explosieve atmosfeer volgens Categorie II 2GD.

1) Installatie van Ex.instrumenten dient altijd te geschieden door geschoold personeel.
2) De ST51/75 moet geaard worden.
3) De aansluitklemmen en de elektronica zijn ingebouwd in een drukvaste behuizing met de volgende opmerkingen:
 - De schroefdraadspleet tussen de behuizing en de deksel is een ontstekingsdoorslagveilige spleet.
 - De Ex-d aansluitbehuizing heeft een ½" NPT of een M20x1.5 schroefdraad voor aansluiting van een volgens IEC/EN 60079-1 goedgekeurde Ex- ‘d’ kabelinvoer.
 - Er moet worden veilig gesteld dat vóór het openen bij een geopende deksel van de ‘d’ behuizing (bijv. bij aansluit- of servicewerkzaamheden) hetzij de voedingsleiding spanningsvrij is, hetzij geen explosieve atmosfeer aanwezig is.
 - De deksel van de ‘d’ behuizing moet tijdens bedrijf tot aan de aanslag erin geschroefd zijn. Hij moet door het eruit draaien van een van de dekselborgschroeven worden geborgd.

Português – Normas de segurança

Estas normas de segurança são válidas para os Fluid Components, ST51/75 conforme o certificado de teste de modelo N.º FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X (número do certificado na plaqueta com os dados do equipamento) são apropriados para utilização em atmosferas explosivas categoria II 2 GD.

1) A instalação de equipamentos em zonas sujeitas a explosão deve, por princípio, ser executada por técnicos qualificados.
2) Os ST51/75 Flexmasster precisam ser ligados à terra.
3) Os terminais e a electrónica para a conexão da tensão de alimentação estão instalados num envólucro com protecção contra ignição à prova de sobressaio com as seguintes notas:
 • A fenda entre o envólucro e a tampa deve ser à prova de passagem de centelha.
 • O envólucro de conexão Ex-‘d’ possui uma rosca 1/2" NPT e/ou M20x1.5 para a entrada de cabos Ex-‘d’ certificado conforme a norma IEC/EN 60079-1.
 • Deve-se assegurar que, antes de abrir a tampa do armário ‘d’ (por exemplo, ao efectuar a conexão ou durante trabalhos de manutenção), o cabo de alimentação esteja sem tensão ou que a atmosfera não seja explosiva.
 • Durante a operação, a tampa do envólucro ‘d’ deve estar apafusada até o encosto. A tampa deve ser bloqueada, por um dos parafusos de fixação.

Español – Instrucciones de seguridad

Estas indicaciones de seguridad son de aplicación para el modelo ST51/75 de Fluid Components, según la certificación CE de modelo N° FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X para aplicaciones en atmosferas potencialmente explosivas según la categoría II 2 GD (el número de certificación se indica sobre la placa informativa del equipo).

1) La instalación de equipos Ex tiene que ser realizada por personal especializado.
2) Los ST51/75 tienen que ser conectados a tierra.
3) Los bornes de conexión y la unidad electrónica están montados dentro de una caja con protección antideflagrante y resistente a presión, considerándose los siguientes puntos:
 • La holgura entre la rosca de la tapa y la propia de la caja está diseñada a prueba contra ignición.
 • La caja tiene conexiones eléctricas para entrada de cables con rosca 1/2" NPT y/o M20x1.5, donde deberán conectarse prensaestopas certificados Exd según IEC/EN60079-1.
 • Antes de la apertura de la tapa de la caja «Exd» (p. ej. durante los trabajos de conexionado o de puesta en marcha) hay que asegurar que el equipo se halle sin tensión o que no exista presencia de atmosfera explosiva.
 • Durante el funcionamiento normal: la tapa de la caja antideflagrante tiene que estar cerrada, roscada hasta el tope, debiéndose asegurar apretando los tornillos de bloqueo.

Svenska – Säkerhetsanvisningar

Säkerhetsanvisningarna gäller för Fluid Components, Flödesmätare typ ST51/75 enligt EG-typkontrollintyg nr FM16ATEX0008X/FM22UKEX0033X/IECEX FMG 16.0009X (intygsnumret återfinns på typskylten) är lämpad för användning i explosiv gasblandning i kategori II 2 GD.

1) Installation av Ex- klassade instrument måste alltid utföras av fackpersonal.
2) ST51/75 måste jordas.
3) Anslutningsskämmorna och elektronikern är inbyggda i en explosions och trycktät kapsling med följande kommentar:
 • Spalten mellan kapslingen och lockets gänga är flamsäker.
 • Ex-’d’ kapslingen har en 1/2" NPT och/eller M20x1.5 gänga för montering av en IEC/EN 60079-1 typkontrollerad Ex-. ‘d’ kabel försiktiga.
 • När Ex-. ‘d’-kapslingen lock är öppet (t.ex. vid koppling - eller servicearbeten) ska man se till att enheten är spänningslös eller att ingen explosiv gasblandning förekommer.
 • Under drift måste Ex- ’d’-kapslingen lock vara iskruvad till anslaget. För att säkra locket skruvar man i en av lockets insex låksäker.
Appendix B - List Commands

Table 5. ST51 List of Single Letter Commands

<table>
<thead>
<tr>
<th>Command Mnemonic</th>
<th>Command Function</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R</td>
<td>AvgDelta_r, AvgRef</td>
</tr>
<tr>
<td>B</td>
<td>R</td>
<td>Delta_r, Ref_r</td>
</tr>
<tr>
<td>C</td>
<td>R</td>
<td>Tcdelta_r, Ref_r</td>
</tr>
<tr>
<td>D</td>
<td>R</td>
<td>Diagnostics</td>
</tr>
<tr>
<td>F</td>
<td>R/W</td>
<td>Kfactors</td>
</tr>
<tr>
<td>G</td>
<td>R/W</td>
<td>Clear FlashEE, Boxcar Count, ADC to Ohms Cal</td>
</tr>
<tr>
<td>K</td>
<td>R/W</td>
<td>Cal Parameters</td>
</tr>
<tr>
<td>L</td>
<td>R/W</td>
<td>Output Cal</td>
</tr>
<tr>
<td>N</td>
<td>W</td>
<td>Warm Restart</td>
</tr>
<tr>
<td>R</td>
<td>W</td>
<td>Factory Restore</td>
</tr>
<tr>
<td>S</td>
<td>R/W</td>
<td>Totalizer Menu On/Off</td>
</tr>
<tr>
<td>T</td>
<td>R</td>
<td>Normal Mode</td>
</tr>
<tr>
<td>V</td>
<td>R/W</td>
<td>Output Config</td>
</tr>
<tr>
<td>W</td>
<td>R/W</td>
<td>Totalizer</td>
</tr>
<tr>
<td>Y</td>
<td>W</td>
<td>Command Line Interface</td>
</tr>
<tr>
<td>Z</td>
<td>W</td>
<td>Flow units, Pipe Size, and LCD Scaling</td>
</tr>
</tbody>
</table>

Table 6. ST51 List of CLI Commands

<table>
<thead>
<tr>
<th>Command Mnemonic</th>
<th>Command Function</th>
<th>Command Description</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK</td>
<td>R/W</td>
<td>Break Point</td>
<td>Float</td>
</tr>
<tr>
<td>BM</td>
<td>R/W</td>
<td>Boxcar Filter Max</td>
<td>Integer</td>
</tr>
<tr>
<td>CM</td>
<td>R/W</td>
<td>Cminflow</td>
<td>Float</td>
</tr>
<tr>
<td>CR</td>
<td>R/W</td>
<td>Calibration Ref</td>
<td>Float</td>
</tr>
<tr>
<td>CX</td>
<td>R/W</td>
<td>Cmaxflow</td>
<td>Float</td>
</tr>
<tr>
<td>C1[1-5]</td>
<td>R/W</td>
<td>Coefficients set1</td>
<td>Float</td>
</tr>
<tr>
<td>C2[1-5]</td>
<td>R/W</td>
<td>Coefficients set2</td>
<td>Float</td>
</tr>
<tr>
<td>D1</td>
<td>R</td>
<td>Diagnostics</td>
<td>Null</td>
</tr>
<tr>
<td>DM</td>
<td>R/W</td>
<td>DeltaR Minimum</td>
<td>Float</td>
</tr>
<tr>
<td>DN</td>
<td>R/W</td>
<td>Density</td>
<td>Float</td>
</tr>
<tr>
<td>DR</td>
<td>R</td>
<td>Delta R</td>
<td>Float</td>
</tr>
<tr>
<td>DX</td>
<td>R/W</td>
<td>DeltaR Maximum</td>
<td>Float</td>
</tr>
<tr>
<td>DS</td>
<td>R/W</td>
<td>DeltaR Slope</td>
<td>Float</td>
</tr>
<tr>
<td>DF</td>
<td>R/W</td>
<td>DeltaR Offset</td>
<td>Float</td>
</tr>
<tr>
<td>EU</td>
<td>R/W</td>
<td>Engineering Units</td>
<td>Integer</td>
</tr>
<tr>
<td>FF</td>
<td>R/W</td>
<td>Flow Factor</td>
<td>Float</td>
</tr>
<tr>
<td>FP</td>
<td>R/W</td>
<td>Fix Point Flag</td>
<td>Integer</td>
</tr>
<tr>
<td>F0</td>
<td>R/W</td>
<td>Pulse Out State0</td>
<td>Integer</td>
</tr>
<tr>
<td>F1</td>
<td>R/W</td>
<td>Pulse Out State1</td>
<td>Integer</td>
</tr>
<tr>
<td>HR</td>
<td>R/W</td>
<td>Tot Dump Hours Cntr</td>
<td>Integer</td>
</tr>
<tr>
<td>IF</td>
<td>R/W</td>
<td>I Factor</td>
<td>Float</td>
</tr>
<tr>
<td>Command Mnemonic</td>
<td>Command Function</td>
<td>Command Description</td>
<td>Data Type</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>K[1-4]</td>
<td>R/W</td>
<td>K Factors</td>
<td>Float</td>
</tr>
<tr>
<td>L0</td>
<td>R/W</td>
<td>Line Size 0</td>
<td>Float</td>
</tr>
<tr>
<td>L1</td>
<td>R/W</td>
<td>Line Size 1</td>
<td>Float</td>
</tr>
<tr>
<td>MN</td>
<td>R/W</td>
<td>Minflow</td>
<td>Float</td>
</tr>
<tr>
<td>MX</td>
<td>R/W</td>
<td>Maxflow</td>
<td>Float</td>
</tr>
<tr>
<td>NN</td>
<td>R/W</td>
<td>Namur Mode</td>
<td>Integer</td>
</tr>
<tr>
<td>OM</td>
<td>R/W</td>
<td>Outmode</td>
<td>Integer</td>
</tr>
<tr>
<td>PF</td>
<td>R/W</td>
<td>Pulse Factor</td>
<td>Float</td>
</tr>
<tr>
<td>PL</td>
<td>R/W</td>
<td>Pulse Out</td>
<td>Integer</td>
</tr>
<tr>
<td>PS</td>
<td>R/W</td>
<td>Pulse Sample Period</td>
<td>Float</td>
</tr>
<tr>
<td>PW</td>
<td>R/W</td>
<td>Pulse Width</td>
<td>Float</td>
</tr>
<tr>
<td>P0</td>
<td>R/W</td>
<td>Switch Point0</td>
<td>Integer</td>
</tr>
<tr>
<td>P1</td>
<td>R/W</td>
<td>Switch Point1</td>
<td>Integer</td>
</tr>
<tr>
<td>RO</td>
<td>R/W</td>
<td>RollOver Cntr</td>
<td>Long</td>
</tr>
<tr>
<td>RR</td>
<td>R</td>
<td>Reference R</td>
<td>Float</td>
</tr>
<tr>
<td>RS</td>
<td>R/W</td>
<td>RefR Slope</td>
<td>Float</td>
</tr>
<tr>
<td>RF</td>
<td>R/W</td>
<td>RefR Offset</td>
<td>Float</td>
</tr>
<tr>
<td>SF</td>
<td>R</td>
<td>SFPS Flow</td>
<td>Float</td>
</tr>
<tr>
<td>SN</td>
<td>R/W</td>
<td>Serial Number</td>
<td>String</td>
</tr>
<tr>
<td>SO</td>
<td>R/W</td>
<td>Shop Order Number</td>
<td>String</td>
</tr>
<tr>
<td>S0</td>
<td>R/W</td>
<td>SpanDAC0 for 4-20mA #1</td>
<td>Integer</td>
</tr>
<tr>
<td>S3</td>
<td>R/W</td>
<td>SpanDAC1 for 4-20mA #2</td>
<td>Integer</td>
</tr>
<tr>
<td>S2</td>
<td>W</td>
<td>Save FACTORY</td>
<td>N/A</td>
</tr>
<tr>
<td>TC</td>
<td>R</td>
<td>TCDeltaR</td>
<td>Float</td>
</tr>
<tr>
<td>TD</td>
<td>R/W</td>
<td>Tcslp</td>
<td>Float</td>
</tr>
<tr>
<td>TF</td>
<td>R/W</td>
<td>Totalizer OFF/ON Flag</td>
<td>Integer</td>
</tr>
<tr>
<td>TM</td>
<td>R/W</td>
<td>Cmintemp</td>
<td>Float</td>
</tr>
<tr>
<td>TP</td>
<td>R/W</td>
<td>Totalizer Temperature Flag</td>
<td>Integer</td>
</tr>
<tr>
<td>TT</td>
<td>R/W</td>
<td>Totalizer Value</td>
<td>Float</td>
</tr>
<tr>
<td>TX</td>
<td>R/W</td>
<td>Cmaxtemp</td>
<td>Float</td>
</tr>
<tr>
<td>TZ</td>
<td>R</td>
<td>Temperature</td>
<td>Float</td>
</tr>
<tr>
<td>T0</td>
<td>R/W</td>
<td>Tcslp0</td>
<td>Float</td>
</tr>
<tr>
<td>T2</td>
<td>R/W</td>
<td>Tcslp2</td>
<td>Float</td>
</tr>
<tr>
<td>T3</td>
<td>R/W</td>
<td>TSpanDAC0 for 4-20mA #1</td>
<td>Integer</td>
</tr>
<tr>
<td>T7</td>
<td>R/W</td>
<td>TSpanDAC1 for 4-20mA #2</td>
<td>Integer</td>
</tr>
<tr>
<td>T5</td>
<td>R/W</td>
<td>TZeroDAC0 for 4-20mA #1</td>
<td>Integer</td>
</tr>
<tr>
<td>T8</td>
<td>R/W</td>
<td>TZeroDAC1 for 4-20mA #2</td>
<td>Integer</td>
</tr>
<tr>
<td>UF</td>
<td>R</td>
<td>User Flow</td>
<td>Float</td>
</tr>
<tr>
<td>UK</td>
<td>R</td>
<td>User FlowK</td>
<td>Float</td>
</tr>
<tr>
<td>UN</td>
<td>R/W</td>
<td>User Name</td>
<td>String</td>
</tr>
<tr>
<td>VN</td>
<td>R</td>
<td>Version Number</td>
<td>String</td>
</tr>
<tr>
<td>XX</td>
<td>R/W</td>
<td>Test Flow Rate (SFPS)</td>
<td>Float</td>
</tr>
<tr>
<td>XY</td>
<td>W</td>
<td>Delete Test Flow Rate</td>
<td>Float</td>
</tr>
<tr>
<td>Z0</td>
<td>R/W</td>
<td>ZeroDAC0 for 4-20mA #1</td>
<td>Integer</td>
</tr>
<tr>
<td>Z2</td>
<td>R/W</td>
<td>ZeroDAC1 for 4-20mA #2</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Command Line Password: 357
Note: When invoking a Write Function, there must be a space separating the Command characters and the data value. All Read and Write Functions are completed with a <CR>. To exit CLI, press <CR> following the last Command <CR>.

Examples:

RBK<CR> (Read Breakpoint)
WBK 2222<CR> (Write Breakpoint 2222)
RC11<CR> (Read Coefficient C1,1)
WC11 -234.567<CR> (Write Coefficient C1,1, -234.567)
<CR> (Leave Command Line Mode)
INTENTIONALLY LEFT BLANK
NOTE OF PROPRIETARY RIGHTS

The document contains confidential technical data, including trade secrets and proprietary information, which is the property of Fluid Components International LLC ("FCI"). FCI reserves all rights to this document and the information contained in it. FCI permits use of this document for the sole purpose of evaluating FCI’s Mass Flow Meter products. Translations of this document, or reproduction of any portion thereof, in any form, are prohibited without prior written consent from FCI.

OUTLINE/INSTALLATION DRAWING

NOTES: UNLESS OTHERWISE SPECIFIED

1. OPTIONAL DISPLAY OFFERS 90° INCREMENTAL ROTATION.
2. STS51/52/5A SPECIFICATIONS:
 - OPERATING TEMPERATURE RANGE: -40°C to 121°C
 - STAINLESS STEEL FERRULE: 2°F to 200°F (-28°C to 93°C)
 - TEFLON FERRULE
 - FLUSH MOUNTING (STPS51/52/5A):
 - STAINLESS STEEL FERRULE: 200°F (93°C)
 - TEFLON FERRULE
3. ADJUSTABLE COMPRESSION FITTING WITH OPTICAL TELSTRA (DUAL LINE DIGITAL DISPLAY):
4. OPTIONAL DISPLAY OFFERS 90° INCREMENTAL ROTATION.
5. ALL ORIENTATION AND MOUNTING REFERENCES ARE INDICATED FROM ENCLOSURE END OF SENSING ELEMENT.
6. FOR ELECTRICAL OPTIONS, CONNECTIONS AND TESTS, SEE APPLICABLE WIRING DIAGRAM.
7. THIS DRAWING IS A REFERENCE DOCUMENT ONLY.
8. UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES, DIMENSIONS IN SQUARE BRACKETS ARE IN MILLIMETERS.
INTENTIONALLY LEFT BLANK
Appendix D - Customer Service

Customer Service/Technical Support
FCI provides full in-house technical support. Additional technical representation is also provided by FCI field representatives. Before contacting a field or in-house representative, perform the troubleshooting techniques outlined in this document.

By Mail
Fluid Components International LLC
1755 La Costa Meadows Dr.
San Marcos, CA 92078-5115 USA
Attn: Customer Service Department

By Phone
Contact the area FCI regional representative. If a field representative is unable to be contacted or if a situation is unable to be resolved, contact the FCI Customer Service Department toll free at 1 (800) 854-1993

By Fax
To describe problems in a graphical or pictorial manner, send a fax including a phone or fax number to the regional representative. Again, FCI is available by facsimile if all possibilities have been exhausted with the authorized factory representative. Our fax number is 1 (760) 736-6250; it is available 7 days a week, 24 hours a day.

By Email
FCI Customer Service can be contacted by email at: techsupport@fluidcomponents.com. Describe the problem in detail making sure a telephone number and best time to be contacted is stated in the email.

International Support
For product information or product support outside the contiguous United States, Alaska, or Hawaii, contact your country’s FCI International Representative or the one nearest to you.

After Hours Support
For product information visit FCI’s website at www.fluidcomponents.com. For product support call 1 (800) 854-1993 and follow the prerecorded instructions.

Point of Contact
The point of contact for service, or return of equipment to FCI is your authorized FCI sales/service office. To locate the office nearest you, visit the FCI website at www.fluidcomponents.com.

Warranty Repairs or Returns
FCI prepays ground transportation charges for return of freight to the customer’s door. FCI reserves the right to return equipment by the carrier of our choice.

International freight, handling charges, duty/entry fees for return of equipment are paid by the customer.

Non-Warranty Repairs or Returns
FCI returns repaired equipment to the customer either collect or prepaid and adds freight charges to the customer invoice.

Return to Stock Equipment
The customer is responsible for all shipping and freight charges for equipment that is returned to FCI stock from the customer site. These items will not be credited to the customer’s account until all freight charges are cleared, along with applicable return to stock charges, from the credit invoice. (Exceptions are made for duplicate shipments made by FCI.)

If any repair or return equipment is received at FCI, freight collect, without prior factory consent, FCI bills the sender for these charges.
Field Service Procedures
Contact an FCI field representative to request field service.

A field service technician is dispatched to the site from either the FCI factory or one of the FCI representative offices. After the work is complete, the technician completes a preliminary field service report at the customer site and leaves a copy with the customer.

Following the service call, the technician completes a formal, detailed service report. The formal report is mailed to the customer within five days of the technician’s return to the factory or office.

Field Service Rates
All field service calls are billed at the prevailing rates as listed in the FCI Price Book unless specifically excepted by the FCI Customer Service Manager.

Customers are charged for all travel expenses including airfare, auto rental, meals and lodging. In addition, the customer shall pay all costs of transporting parts, tools or goods to and from the job site. Invoicing travel time, field service work and other expenses will be performed by FCI’s Accounting Department.
Return Authorization Request

1. Return Customer Information

Returning Company’s Name: ___________________________ Phone#: ___________________________
Return Contact Name: __________________________ Fax #: ___________________________
Email Address: __

2. Return Address

Bill To: __ Ship To: ___________________________
__
__
__
__

3. Mandatory End User Information

Contact: __________________________ Company: __________________________ Country: ___________

4. Return Product Information

Model No: __________________________ Serial No(s): __________________________
Failure Symptoms (Detailed Description Required): __________________________
What Trouble Shooting Was Done Via Phone or Field Visit by FCI: __________________________
FCI Factory Technical Service Contact: __________________________

5. Reason For Return

☐ Sensor Element ☐ Electronics ☐ As Found Testing ☐ Credit
☐ Recalibrate [New Data] ☐ Recalibrate [Most Recent Data] ☐ Other

(Note: A new Application Data Sheet (ADS) must be submitted for all recalibrations and re-certifications)

6. Payment Via

☐ Faxed Purchase Order ☐ Visa ☐ MasterCard

(Note: A priced quotation is provided for all Non-Warranty repairs after equipment has been evaluated. All Non-Warranty repairs are subject to a minimum evaluation charge of $250.00)

Factory Return Shipping Address: Fluid Components International LLC
1755 La Costa Meadows Drive
San Marcos, CA 92078-5115
Attn: Repair Department
RA #: __________________________

FCI Document No. 85C3000004B [U]
Fluid Components International LLC

ST51 Mass Flow Meter

The following Return Authorization Request form and Decontamination Statement MUST be completed, signed and faxed back to FCI before a Return Authorization Number will be issued. The signed Decontamination Statement and applicable MSDS Sheets must be included with the shipment. FCI will fax, email or telephone you with the Return Authorization Number upon receipt of the signed forms.

Packing Procedures

1. **Electronics** should be wrapped in an anti-static or static-resistant bag, then wrapped in protective bubble wrap and surrounded with appropriate dunnage* in a box. Instruments weighing more than 50 lbs., or extending more than four feet, should be secured in wooden crates by bolting the assemblies in place.
2. The sensor head must be protected with pvc tubing, or retracted the full length of the probe, locked and secured into the Packing Gland Assembly (cap screws tightened down).
3. FCI can supply crates for a nominal fee.
4. No more than four (4) small units packaged in each carton.
5. FCI will not be held liable for damage caused during shipping.
6. To ensure immediate processing mark the RA number on the outside of the box. Items without an RA number marked on the box or crate may be delayed.
7. Freight must be “PrePaid” to FCI receiving door.

* Appropriate dunnage as defined by UPS, will protect package contents from a drop of 3 feet.

Decontamination Statement

Exposure to hazardous materials is regulated by Federal, State, County and City laws and regulations. These laws provide FCI’s employees with the “Right to Know” the hazardous or toxic materials or substances in which they may come in contact while handling returned products. Consequently, FCI’s employees must have access to data regarding the hazardous or toxic materials or substances the equipment has been exposed to while in a customer’s possession. Prior to returning the instrument for evaluation/repair, FCI requires thorough compliance with these instructions. The signer of the Certificate must be either a knowledgeable Engineer, Safety Manager, Industrial Hygienist or of similar knowledge or training and responsible for the safe handling of the material to which the unit has been exposed. Returns without a legitimate Certification of Decontamination, and/or MSDS when required, are unacceptable and shall be returned at the customer’s expense and risk. Properly executed Certifications of Decontamination must be provided before a repair authorization (RA) number will be issued.

Certification Of Decontamination

I certify that the returned item(s) has(have) been thoroughly and completely cleaned. If the returned item(s) has(have) been exposed to hazardous or toxic materials or substances, even though it (they) has (have) been thoroughly cleaned and decontaminated, the undersigned attests that the attached Material Data Safety Sheet(s) (MSDS) covers said materials or substances completely. Furthermore, I understand that this Certificate, and providing the MSDS, shall not waive our responsibility to provide a neutralized, decontaminated, and clean product for evaluation/repair at FCI. Cleanliness of a returned item or acceptability of the MSDS shall be at the sole discretion of FCI. Any item returned which does not comply with this certification shall be returned to your location Freight Collect and at your risk.

This certification must be signed by knowledgeable personnel responsible for maintaining or managing the safety program at your facility.

Process Flow Media

Product was or may have been exposed to the following substances:

Print Name

Authorized Signature ____________________________ Date ____________

Company Title _______________________________

Visit FCI on the Worldwide Web: www.fluidcomponents.com

1755 La Costa Meadows Drive, San Marcos, California 92078-5115 USA ‡ Phone: 760-744-6950 ‡ 800-854-1993 ‡ Fax: 760-736-6250

FCI Document No. 05CS00004D [U]
Instrument Warranty

Goods furnished by the Seller are to be within the limits and of the sizes published by the Seller and subject to the Seller’s standard tolerances for variations. All items made by the Seller are inspected before shipment, and should any of said items prove defective due to faults in manufacture or performance under Seller approved applications, or fail to meet the written specifications accepted by the Seller, they will be replaced or repaired by Seller at no charge to Buyer provided return or notice of rejection of such material is made within a reasonable period but in no event longer than one (1) year from date of shipment to Buyer, and provided further, that an examination by Seller discloses to Seller’s reasonable satisfaction that the defect is covered by this warranty and that the Buyer has not returned the equipment in a damaged condition due to Buyer’s or Buyer’s employees’, agents’, or representatives’ negligence and Buyer has not tampered, modified, redesigned, misapplied, abused, or misused the goods as to cause the goods to fail. In addition, this warranty shall not cover damage caused by Buyer’s exposure of the goods to corrosive or abrasive environments. Moreover, Seller shall in no event be responsible for (1) the cost or repair of any work done by Buyer on material furnished hereunder (unless specifically authorized in writing in each instance by Seller), (2) the cost or repair of any modifications added by a Distributor or a third party, (3) any consequential or incidental damages, losses, or expenses in connection with or by reason of the use of or inability to use goods purchased for any purpose, and Seller’s liability shall be specifically limited to free replacement, or refund of the purchase price, at Seller’s option, provided return or rejection of the goods is made consistent with this paragraph, and the Seller shall in no event be liable for transportation, installation, adjustment, loss of good will or profits, or other expenses which may arise in connection with such returned goods, or (4) the design of products or their suitability for the purpose for which they are intended or used. Should the Buyer receive defective goods as defined by this paragraph, the Buyer shall notify the Seller immediately, stating full particulars in support of his claim, and should the Seller agree to a return of the goods, the Buyer shall follow Seller’s packaging and transportation directions explicitly. In no case are the goods to be returned without first obtaining a return authorization from the Seller. Any repair or replacement shall be at Seller’s factory, unless otherwise directed, and shall be returned to Seller transportation prepaid by Buyer. If the returned goods shall prove defective under this clause they will be replaced or repaired by Seller at no charge to Buyer provided return or rejection of such material is made within a reasonable period, but in no event longer than one (1) year from the date of shipment of the returned goods or the unexpired terms of the original warranty period whichever is later. If the goods prove to be defective under this paragraph, the Buyer shall remove the goods immediately from the process and prepare the goods for shipment to Seller. Continued use or operation of defective goods is not warranted by Seller and damage occurring due to continued use or operation shall be for Buyer’s account. Any description of the goods contained in this offer is for the sole purpose of identifying them, and any such description is not part of the basis of the bargain, and does not constitute a warranty that the goods will conform to that description. The use of any sample or model in connection with this offer is for illustrative purposes only, is not part of the basis of the bargain, and is not to be construed as a warranty that the goods will conform to the sample or model. No affirmation of that fact or promise made by the Seller, whether or not in this offer, will constitute a warranty that the goods will conform to the affirmation or promise. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY AND ALL OTHER EXPRESS OR IMPLIED WARRANTIES WITH RESPECT TO THE GOODS OR THEIR INSTALLATION, USE, OPERATION, REPLACEMENT OR REPAIR, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS OF PURPOSE; AND THE GOODS ARE BEING PURCHASED BY BUYER “AS IS”. SELLER WILL NOT BE LIABLE BY VIRTUE OF THIS WARRANTY OR OTHERWISE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL LOSS OR DAMAGE RESULTING FROM THE USE OR LOSS OF USE OF THE GOODS.